An Internet Book on Fluid Dynamics

Solution to Problem 150J:

Since the flow is purely radial (in spherical coordinates, $u_{r} \neq 0, u_{\theta}=u_{\phi}=0$, the continuity equation for an incompressible fluid requires that

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(r^{2} u_{r}\right)=0 \tag{1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
r^{2} u_{r}=f(t) \tag{2}
\end{equation*}
$$

or some function, f, of t. But since $u_{r}=d R / d t$ at $r=R(t)$:

$$
\begin{equation*}
f(t)=R^{2} \frac{d R}{d t} \quad \text { and } \quad u_{r}=\frac{R^{2}}{r^{2}} \frac{d R}{d t} \tag{3}
\end{equation*}
$$

For this radial flow Euler's equations in the θ and ϕ directions are automatically satisfied and the equation in the r direction reduces to

$$
\begin{equation*}
\rho\left(\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}\right)=-\frac{\partial p}{\partial r} \tag{4}
\end{equation*}
$$

and substituting the above expression for u_{r} :

$$
\begin{equation*}
-\frac{1}{\rho} \frac{\partial p}{\partial r}=\frac{2 R}{r^{2}}\left(\frac{d R}{d t}\right)^{2}+\frac{R^{2}}{r^{2}} \frac{d^{2} R}{d t^{2}}-\frac{2 R^{4}}{r^{5}}\left(\frac{d R}{d t}\right)^{2} \tag{5}
\end{equation*}
$$

Integrating

$$
\begin{equation*}
\frac{p(r, t)}{\rho}=\frac{2 R}{r}\left(\frac{d R}{d t}\right)^{2}+\frac{R^{2}}{r} \frac{d^{2} R}{d t^{2}}-\frac{R^{4}}{2 r^{4}}\left(\frac{d R}{d t}\right)^{2}+C \tag{6}
\end{equation*}
$$

where C is an integration constant that follows when the condition that $p \rightarrow p_{\infty}$ as $r \rightarrow \infty$ is applied. Also in the absence of surface tension $p(R, t)$ is equal to the pressure in the bubble, p_{B}, so that

$$
\begin{equation*}
\frac{\left(p_{B}-p_{\infty}\right)}{\rho}=\frac{3}{2}\left(\frac{d R}{d t}\right)^{2}+R \frac{d^{2} R}{d t^{2}} \tag{7}
\end{equation*}
$$

which is the Rayleigh equation for bubble growth.

