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Solution to Problem 150J:

Since the flow is purely radial ( in spherical coordinates, ur �= 0, uθ = uφ = 0, the continuity equation for
an incompressible fluid requires that
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For this radial flow Euler’s equations in the θ and φ directions are automatically satisfied and the equation
in the r direction reduces to
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and substituting the above expression for ur:
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Integrating
p(r, t)
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where C is an integration constant that follows when the condition that p → p∞ as r → ∞ is applied.
Also in the absence of surface tension p(R, t) is equal to the pressure in the bubble, pB, so that
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which is the Rayleigh equation for bubble growth.


