An Internet Book on Fluid Dynamics

Solution to Problem 150F

Part [1]

With the prescription of the flow in this problem, the Navier-Stokes equations become

$$
\begin{gathered}
-\rho \frac{u_{\theta}^{2}}{r}=-\frac{d p}{d r} \\
0=\mu\left(\frac{d^{2} u_{\theta}}{d r^{2}}+\frac{1}{r} \frac{d u_{\theta}}{d r}-\frac{u_{\theta}}{r^{2}}\right)
\end{gathered}
$$

The note at the end of the problem provides the solution to the differential equation,

$$
\frac{d^{2} X}{d r^{2}}+\frac{1}{r} \frac{d X}{d r}-\frac{X}{r^{2}}=0
$$

namely

$$
X=A r+\frac{B}{r}
$$

where A and B are integration constants. In the present problem this yields

$$
u_{\theta}=A r+\frac{B}{r}
$$

We now apply the boundary conditions to determine the values of A and B. At $r=a$ (the surface of the inner, stationary cylinder) $u_{\theta}=0$ by the no-slip condition, so that

$$
0=A a+\frac{B}{a} \quad \Longrightarrow \quad B=-A a^{2}
$$

Also at $r=b$ (the surface of the outer, rotating cylinder) $u_{\theta}=\Omega b$, where Ω is the angular velocity of the outer cylinder, so that

$$
\Omega b=A b+\frac{B}{b}=A\left(b-\frac{a^{2}}{b}\right) \quad \Longrightarrow \quad A=\frac{\Omega b}{b^{2}-a^{2}}
$$

Substituting these expressions for A and B into the flow solution yields

$$
u_{\theta}=\frac{\Omega b^{2}}{b^{2}-a^{2}}\left(r-\frac{a^{2}}{r}\right)
$$

Part [2]

Using this solution the first equation yields

$$
\frac{d p}{d r}=\rho \frac{u_{\theta}^{2}}{r}=\rho \frac{\Omega^{2} b^{4}}{\left(b^{2}-a^{2}\right)^{2}}\left(r-2 \frac{a^{2}}{r}+\frac{a^{4}}{r^{3}}\right)
$$

and integrating this yields

$$
p(r)=\rho \frac{\Omega^{2} b^{4}}{\left(b^{2}-a^{2}\right)^{2}}\left(\frac{1}{2} r^{2}-2 a^{2} \ln r-\frac{a^{4}}{2 r^{2}}\right)+C
$$

where C is an integration constant. This can be used to find the pressure difference between the surfaces of the two cylinders, namely

$$
p(b)-p(a)=\left[\rho \frac{\Omega^{2} b^{4}}{\left(b^{2}-a^{2}\right)^{2}}\left(\frac{1}{2} b^{2}-2 a^{2} \ln b-\frac{a^{4}}{2 b^{2}}\right)\right]-\left[\rho \frac{\Omega^{2} b^{4}}{\left(b^{2}-a^{2}\right)^{2}}\left(\frac{1}{2} a^{2}-2 a^{2} \ln a-\frac{a^{2}}{2}\right)\right]
$$

which simplifies to

$$
p(b)-p(a)=\rho \frac{\Omega^{2} b^{4}}{\left(b^{2}-a^{2}\right)^{2}}\left[\frac{1}{2}\left(b^{2}-a^{2}\right)-2 a^{2}(\ln b-\ln a)-\frac{a^{2}}{2}\left(\frac{a^{2}}{b^{2}}-1\right)\right]
$$

Part [3]

The definition of the shear stress on the wall is

$$
\left.\sigma\right|_{\mathrm{wall}}=\left.\mu \frac{d u_{\theta}}{d r}\right|_{\mathrm{wall}}
$$

Calculating $d u_{\theta} / d r$ from the solution to the flow

$$
\frac{d u_{\theta}}{d r}=\frac{\Omega b^{2}}{b^{2}-a^{2}}\left(1+\frac{a^{2}}{r^{2}}\right)
$$

For the inner cylinder

$$
\sigma_{r=a}=2 \mu \frac{\Omega b^{2}}{b^{2}-a^{2}}
$$

and for the outer cylinder

$$
\left.\sigma\right|_{r=b}=\mu \frac{\Omega b^{2}}{b^{2}-a^{2}}\left(1+\frac{a^{2}}{b^{2}}\right)
$$

Part [4]

The power required to rotate the outer cylinder is given by

$$
P=F u
$$

where F is the force necessary to rotate the cylinder and u is the speed with which the cylinder is rotating. In this problem

$$
P=\left.\left.\sigma\right|_{r=b} A_{\text {cylinder }} u_{\theta}\right|_{r=b}
$$

If the length of the outer cylinder is L, then

$$
A_{\text {cylinder }}=2 \pi b L
$$

Evaluating the stress and velocity at $r=b$ and substituting yields

$$
P=\left[\mu \frac{\Omega b^{2}}{b^{2}-a^{2}}\left(1+\frac{a^{2}}{b^{2}}\right)\right](2 \pi b L)(\Omega b)
$$

which simplfies to

$$
P=2 \pi L \mu \frac{\Omega^{2} b^{4}}{b^{2}-a^{2}}\left(1+\frac{a^{2}}{b^{2}}\right)
$$

