An Internet Book on Fluid Dynamics

Solution to Problem 150D

Each of the two fluids experience a Couette flow and therefore the velocities in the two streams must be given by

$$
u_{A}(y)=C y+D
$$

and

$$
u_{B}(y)=E y+F
$$

where C, D, E and F are constants to be determined by the boundary conditions as follows:

- The no-slip boundary condition at the lower wall requires that

$$
u_{B}(0)=0
$$

- The no-slip boundary condition at the upper wall requires that

$$
u_{A}(H)=U
$$

- The no-slip boundary condition at the interface requires that

$$
u_{A}(H / 2)=u_{B}(H / 2)
$$

- The shear stress at the interface must be the same in the two fluids so that

$$
\sigma_{A}(H / 2)=\mu_{A}\left(\frac{d u_{A}}{d y}\right)_{y=H / 2}=\sigma_{B}(H / 2)=\mu_{B}\left(\frac{d u_{B}}{d y}\right)_{y=H / 2}
$$

Utilizing these four boundary conditions allows evaluation of C, D, E and F and from these we arrive at the velocity, u^{*}, of the interface:

$$
u^{*}=\frac{U}{1+\frac{\mu_{B}}{\mu_{A}}}
$$

For the given ratio of viscosities, μ_{B} / μ_{A}, this gives:

$$
u^{*}=\frac{U}{5}
$$

The apparent viscosity μ^{*} can be evaluated by assuming an observer who only sees the boundary walls and an apparent viscosity would conclude that this was

$$
\mu^{*}=\sigma_{A} / \frac{U}{H}=\frac{8}{5} \mu_{A}=\frac{8}{5} \mu
$$

