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Solution to Problem 150A

1.) Since the flow is steady, planar, and incompressible the continuity equation is:
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∂x
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∂y
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The velocity in the vertical direction, v, is zero at both boundaries and thus everywhere in the flow, so the continuity equation
dictates that:

∂u
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= 0

so u is only a function of y, u = u(y).

The Navier-Stokes equation in the y-direction reduces to
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∂y
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and therefore the pressure can only be a function of x.

The Navier-Stokes equation in the x-direction is:
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Since the flow is steady, planar, v = 0, and ∂u
∂x = 0, this becomes:
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Integrating twice with respect to y and noting that ∂p/∂x is a simple constant for this operation:
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We now use the boundary conditions to evaluate the constants c1, c2 :

u(0) = c2 = 0

u(H) =
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Therefore
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Inserting these values for the constants, the velocity distribution is:
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2.) Find the magnitude and direction of the particular pressure gradient for which there would be zero net volume flow in
the x direction. Evaluating the volume flow rate, Q, per unit depth normal to the sketch:
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Therefore the particular pressure gradient, ∂̂p
∂x

, for which there will be no net volume flow (Q = 0) will be:

∂̂p

∂x
=

6µU

H2

The pressure gradient is positive, so the pressure will need to increase in the positive x-direction to offset the effect of the
moving upper plate.


