Solution to Problem 149A:

Using the solution for Poiseuille flow, the average velocity in the pipe, \bar{u}, is

$$
\begin{equation*}
\bar{u}=\frac{R^{2}}{8 \mu}\left(-\frac{d p}{d x}\right)=\frac{\left(0.25 \times 10^{-6} \mathrm{~m}^{2}\right)\left(0.15 \times 10^{5} \mathrm{~kg} / \mathrm{m} \mathrm{~s}^{2}\right)}{8\left(10^{-3} \mathrm{~kg} / \mathrm{ms}\right)(1.0 \mathrm{~m})}=0.47 \mathrm{~m} / \mathrm{s} \tag{1}
\end{equation*}
$$

Therefore the Reynolds number of the flow in the pipe is

$$
\begin{equation*}
R e=\frac{2 R \rho \bar{u}}{\mu}=\frac{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.47 \mathrm{~m} / \mathrm{s})(0.001 \mathrm{~m})}{\left.\left(10^{-3} \mathrm{~kg} / \mathrm{m}\right) \mathrm{s}\right)}=470 \tag{2}
\end{equation*}
$$

and therefore the friction factor, f, for this flow which is laminar at this Reynolds number is

$$
\begin{equation*}
f=\frac{64}{R e}=\frac{64}{470}=0.136 \tag{3}
\end{equation*}
$$

