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Solution to Problem 140C

Part (A)

The velocity profile for Couette flow is linear:

u(y) =
U

h
y

where U is the velocity of the moving plate, h is the distance between the two plates, and y is measured in a direction normal
to the plates. The vorticity is defined as

�ω = ∇× �u

and its magnitude in planar flow is therefore given by

ω =
∂v

∂x
− ∂u

∂y

In Couette flow, ∂v/∂x = 0, and the (magnitude of the) vorticity is

ω = −∂u

∂y
= −U

h

Part (B)

In planar Poisseuille flow, the velocity profile is
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and therefore the vorticity is given by

ω = −∂u
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which becomes
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Part (C)

The Couette flow of problem 150D had a velocity profile given as

u(y) =
8Uy
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for y >
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2
and =
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The vorticity is

ω = −∂u

∂y

which becomes
ω = − 8U
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2
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5H
for y <
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Part (D)

The velocity profile for the flow in problem 150B is

u(y, t) = U∗ekte−
√

ρ
µ ky

Therefore the vorticity is

ω = −∂u

∂y

which becomes
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ρ

µ
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√
ρ
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Part (E)

The velocity profile for steady, vortical flow is given as

uθ(r) = Ar +
B

r

where A and B are constants. The definition of the vorticity is
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= ẑ (2A)

where r̂, θ̂, and ẑ are unit vectors in the r-, θ-, and z-directions, respectively. Thus, the magnitude of the vorticity vector is

ω = 2A


