An Internet Book on Fluid Dynamics

Solution to Problem 140C

Part (A)

The velocity profile for Couette flow is linear:

$$
u(y)=\frac{U}{h} y
$$

where U is the velocity of the moving plate, h is the distance between the two plates, and y is measured in a direction normal to the plates. The vorticity is defined as

$$
\vec{\omega}=\nabla \times \vec{u}
$$

and its magnitude in planar flow is therefore given by

$$
\omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}
$$

In Couette flow, $\partial v / \partial x=0$, and the (magnitude of the) vorticity is

$$
\omega=-\frac{\partial u}{\partial y}=-\frac{U}{h}
$$

Part (B)

In planar Poisseuille flow, the velocity profile is

$$
u(y)=\frac{1}{\mu}\left(-\frac{\partial p}{\partial x}\right) \frac{y}{2}(H-y)=\frac{1}{\mu}\left(-\frac{\partial p}{\partial x}\right)\left(\frac{H}{2} y-\frac{y^{2}}{2}\right)
$$

and therefore the vorticity is given by

$$
\omega=-\frac{\partial u}{\partial y}
$$

which becomes

$$
\omega=-\frac{1}{\mu}\left(-\frac{\partial p}{\partial x}\right)\left(\frac{H}{2}-y\right)
$$

Part (C)

The Couette flow of problem 150D had a velocity profile given as

$$
u(y)=\frac{8 U y}{5 H}-\frac{3 U}{5} \quad \text { for } y>\frac{H}{2} \quad \text { and } \quad=\frac{2 U y}{5 H} \quad \text { for } y<\frac{H}{2}
$$

The vorticity is

$$
\omega=-\frac{\partial u}{\partial y}
$$

which becomes

$$
\omega=-\frac{8 U}{5 H} \quad \text { for } y>\frac{H}{2} \quad \text { and } \quad=-\frac{2 U}{5 H} \quad \text { for } y<\frac{H}{2}
$$

Part (D)

The velocity profile for the flow in problem 150B is

$$
u(y, t)=U^{*} e^{k t} e^{-\sqrt{\frac{p}{\mu} k} y}
$$

Therefore the vorticity is

$$
\omega=-\frac{\partial u}{\partial y}
$$

which becomes

$$
\omega=\sqrt{\frac{\rho}{\mu} k} U^{*} e^{k t} e^{-\sqrt{\frac{\rho}{\mu} k} y}
$$

Part (E)

The velocity profile for steady, vortical flow is given as

$$
u_{\theta}(r)=A r+\frac{B}{r}
$$

where A and B are constants. The definition of the vorticity is

$$
\vec{\omega}=\nabla \times \vec{u}=\left(\hat{r} \frac{\partial}{\partial r}+\frac{\hat{\theta}}{r} \frac{\partial}{\partial \theta}\right) \times\left[\hat{\theta}\left(A r+\frac{B}{r}\right)\right]=\hat{z}\left\{\frac{1}{r} \frac{\partial}{\partial r}\left[\left(A r+\frac{B}{r}\right) r\right]\right\}=\hat{z}\left[\frac{1}{r}(2 A r)\right]=\hat{z}(2 A)
$$

where $\hat{r}, \hat{\theta}$, and \hat{z} are unit vectors in the $r_{-}, \theta-$, and z-directions, respectively. Thus, the magnitude of the vorticity vector is

$$
\omega=2 A
$$

