Solution to Problem 140A:

Consider a closed contour, C, enclosing a surface, A, in the planar flow of an incompressible fluid (the area, A, contains only fluid): The coordinate s is measured along the contour C and the "circulation", Γ,

is defined as the line integral of the fluid velocity, \underline{u}, around the contour C :

$$
\Gamma=\int_{C} \underline{u} \cdot \underline{d s}
$$

Then, by Stokes' theorem

$$
\Gamma=\int_{A}(\nabla \times \underline{u}) \cdot \underline{n} d A=\int_{A} \underline{\omega} \cdot \underline{n} d A
$$

where \underline{n} is the unit vector normal to the surface A and $\underline{\omega}$ is the vorticity. For planar flow

$$
\Gamma=\int_{A} \omega d A
$$

In words, the circulation around C is equal to the total amount of vorticity inside A.
Moreover, if ω is zero inside A (the flow is irrotational) then clearly $\Gamma=0$.

