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Solution to Problem 137B:

One of the most powerful tools for the solution of planar potential flows is the method of complex variables.
This is based on the so-called Cauchy-Riemann equations
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which have the following mathematical consequence. If we define a complex position vector,

z = x+ iy = reiθ (2)

and a complex potential f = φ+ iψ then it follows from the Cauchy-Riemann equations that any function
f(z) is necessarily a solution of Laplace’s equation

∇2φ = 0 and ∇2ψ = 0 (3)

To prove this we replace the independent variables x and y by the variable z = x + iy and its complex
conjugate z = x− iy so that in general f(z, z) will be a function of both z and z. Moreover since
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If we then examine the derivative:
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because of the Cauchy-Riemann relations. Since ∂f/∂z = 0 it follows that f is only a function of z and
not of z. It therefore follows that any function f(z) that satifies the Cauchy-Riemann relations, therefore
satisfies ∇2φ = 0 and ∇2ψ = 0 and therefore constitutes the solution to a planar potential flow.


