An Internet Book on Fluid Dynamics

Solution to Problem 137B:

One of the most powerful tools for the solution of planar potential flows is the method of complex variables. This is based on the so-called Cauchy-Riemann equations

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \quad \text { and } \quad \frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x} \tag{1}
\end{equation*}
$$

which have the following mathematical consequence. If we define a complex position vector,

$$
\begin{equation*}
z=x+i y=r e^{i \theta} \tag{2}
\end{equation*}
$$

and a complex potential $f=\phi+i \psi$ then it follows from the Cauchy-Riemann equations that any function $f(z)$ is necessarily a solution of Laplace's equation

$$
\begin{equation*}
\nabla^{2} \phi=0 \quad \text { and } \quad \nabla^{2} \psi=0 \tag{3}
\end{equation*}
$$

To prove this we replace the independent variables x and y by the variable $z=x+i y$ and its complex conjugate $\bar{z}=x-i y$ so that in general $f(z, \bar{z})$ will be a function of both z and \bar{z}. Moreover since

$$
\begin{equation*}
x=\frac{z+\bar{z}}{2} \quad \text { and } \quad y=\frac{z-\bar{z}}{2 i} \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\partial x}{\partial z}=\frac{\partial x}{\partial \bar{z}}=\frac{1}{2} \quad \text { and } \quad \frac{\partial y}{\partial z}=-\frac{\partial y}{\partial \bar{z}}=\frac{1}{2 i} \tag{5}
\end{equation*}
$$

If we then examine the derivative:

$$
\begin{equation*}
\frac{\partial f}{\partial \bar{z}}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \bar{z}}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \bar{z}}=\left\{\frac{\partial f}{\partial x}\right\}\left\{\frac{1}{2}\right\}+\left\{\frac{\partial f}{\partial y}\right\}\left\{-\frac{1}{2 i}\right\} \tag{6}
\end{equation*}
$$

and therefore

$$
\begin{gather*}
\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left\{\frac{\partial \phi}{\partial x}+i \frac{\partial \psi}{\partial x}\right\}+\frac{i}{2}\left\{\frac{\partial \phi}{\partial y}+i \frac{\partial \psi}{\partial y}\right\} \tag{7}\\
\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left\{\frac{\partial \phi}{\partial x}-\frac{\partial \psi}{\partial y}\right\}+\frac{i}{2}\left\{\frac{\partial \phi}{\partial y}+\frac{\partial \psi}{\partial x}\right\}=0 \tag{8}
\end{gather*}
$$

because of the Cauchy-Riemann relations. Since $\partial f / \partial \bar{z}=0$ it follows that f is only a function of z and not of \bar{z}. It therefore follows that any function $f(z)$ that satifies the Cauchy-Riemann relations, therefore satisfies $\nabla^{2} \phi=0$ and $\nabla^{2} \psi=0$ and therefore constitutes the solution to a planar potential flow.

