Solution to Problem 137B:

One of the most powerful tools for the solution of planar potential flows is the method of complex variables. This is based on the so-called Cauchy-Riemann equations

$$\frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y} \quad \text{and} \quad \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$$
 (1)

which have the following mathematical consequence. If we define a complex position vector,

$$z = x + iy = re^{i\theta} \tag{2}$$

and a complex potential $f = \phi + i\psi$ then it follows from the Cauchy-Riemann equations that any function f(z) is necessarily a solution of Laplace's equation

$$\nabla^2 \phi = 0 \quad \text{and} \quad \nabla^2 \psi = 0 \tag{3}$$

To prove this we replace the independent variables x and y by the variable z = x + iy and its complex conjugate $\overline{z} = x - iy$ so that in general $f(z, \overline{z})$ will be a function of both z and \overline{z} . Moreover since

$$x = \frac{z + \overline{z}}{2}$$
 and $y = \frac{z - \overline{z}}{2i}$ (4)

then

$$\frac{\partial x}{\partial z} = \frac{\partial x}{\partial \overline{z}} = \frac{1}{2} \text{ and } \frac{\partial y}{\partial z} = -\frac{\partial y}{\partial \overline{z}} = \frac{1}{2i}$$
 (5)

If we then examine the derivative:

$$\frac{\partial f}{\partial \overline{z}} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \overline{z}} = \left\{ \frac{\partial f}{\partial x} \right\} \left\{ \frac{1}{2} \right\} + \left\{ \frac{\partial f}{\partial y} \right\} \left\{ -\frac{1}{2i} \right\}$$
(6)

and therefore

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left\{ \frac{\partial \phi}{\partial x} + i \frac{\partial \psi}{\partial x} \right\} + \frac{i}{2} \left\{ \frac{\partial \phi}{\partial y} + i \frac{\partial \psi}{\partial y} \right\}$$
(7)

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left\{ \frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial y} \right\} + \frac{i}{2} \left\{ \frac{\partial \phi}{\partial y} + \frac{\partial \psi}{\partial x} \right\} = 0$$
(8)

because of the Cauchy-Riemann relations. Since $\partial f/\partial \overline{z} = 0$ it follows that f is only a function of z and not of \overline{z} . It therefore follows that any function f(z) that satisfies the Cauchy-Riemann relations, therefore satisfies $\nabla^2 \phi = 0$ and $\nabla^2 \psi = 0$ and therefore constitutes the solution to a planar potential flow.