Solution to Problem 137A:

The surface of the cylinder in the z-plane is given by $z = Re^{i\theta}$ where $0 \le \theta \le 2\pi$, θ being an angle. In the ζ -plane this maps to

$$\zeta = Re^{i\theta} - Re^{-i\theta} = 2Ri\sin\theta = \xi + i\eta \tag{1}$$

Consequently the surface is at $\xi = 0$ (flat plate) and $\eta = 2R\sin\theta$ so the plate extends to $\eta = \pm 2R$. Therefore the plate width is 4R.

The velocity components, u and v, in the ζ -plane are given by

$$\frac{df}{d\zeta} = u - iv = \frac{df}{dz} \left[\frac{d\zeta}{dz} \right]^{-1} = U \left[1 - \frac{R^2}{z^2} \right] \left[1 + \frac{R^2}{z^2} \right]^{-1}$$
(2)

and on the plate surface

$$(u - iv)_{On \ z = Re^{i\theta}} = iU \tan\theta \tag{3}$$

Therefore on the surface of the flat plate

$$u = 0 \quad \text{and} \quad v = -U \tan \theta \tag{4}$$

Hence $|u^2 + v^2| = U^2$ when $\tan \theta = 1$ or $\theta = \pm \pi/4$, that is to say at the points $\eta = \pm \sqrt{2R}$.