An Internet Book on Fluid Dynamics

Solution to Problem 133A:

The potential flow around a cylinder of radius, R, traveling in the x direction with velocity, U, in a fluid

at rest far from the cylinder, has a velocity potential, $\phi=-\left(U R^{2} / r\right) \cos \theta$ and velocity components:

$$
\begin{equation*}
u_{r}=\frac{\partial \phi}{\partial r}=\frac{U R^{2}}{r^{2}} \cos \theta ; u_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=\frac{U R^{2}}{r^{2}} \sin \theta \tag{1}
\end{equation*}
$$

[Note that on the surface of the cylinder $u_{r}=U \cos \theta, u_{\theta}=U \sin \theta$.]
(a) The total kinetic energy in the flow is

$$
\begin{gather*}
=\frac{\rho}{2} \int_{\text {Volume of fluid }}\left(u_{r}^{2}+u_{\theta}^{2}\right) d V \tag{2}\\
=\frac{\rho}{2} \int_{R}^{\infty} \int_{0}^{2 \pi} \frac{U^{2} R^{4}}{r^{4}}(\cos \theta)^{2}+\frac{U^{2} R^{4}}{r^{4}}(\sin \theta)^{2} \quad d \theta d r \tag{3}\\
=\frac{\rho}{2} \int_{R}^{\infty} \frac{2 \pi U^{2} R^{4}}{r^{4}} d r \tag{4}\\
=\frac{\pi}{2} \rho U^{2} R^{2} \tag{5}
\end{gather*}
$$

(b) Therefore when U increases from U to $U+\delta U$, the kinetic energy increases by $\pi \rho r^{2} U \delta U$. This additional energy must come from the work done by the cylinder on the fluid due to the drag, F, acting in the negative x direction.
(c) If this change occurs in a time δt, the distance over which the force F acts is $U \delta t$ and therefore

$$
\begin{equation*}
F u \delta t=\pi \rho R^{2} u \delta U \quad \text { and } \quad F=\pi \rho R^{2} \frac{\delta U}{\delta t} \tag{6}
\end{equation*}
$$

and the quantity $\rho \pi R^{2}$ is known as the "added mass".

