## An Internet Book on Fluid Dynamics

## Solution to Problem 130F

As in the course notes, we solve Laplace's equation $\left(\nabla^{2} \phi=0\right)$ with appropriate boundary condtions. The conditions in the horizontal direction state that there is no flow through the side walls:

$$
\begin{array}{ll}
B C \# 1: & u(0, y, t)=0 \\
B C \# 2: & u(L, y, t)=0
\end{array}
$$

In the vertical direction, there will be no flow through the bottom $(y=-H)$. The condition at the free surface is more involved. Here we use the kinematic and dynamic (from the unsteady Bernoulli equation) conditions to form the fourth boundary condtion:

$$
\begin{gathered}
B C \# 3: \quad v(x,-H, t)=0 \\
B C \# 4 a: \quad \frac{\partial h}{\partial t}=v(x, h, t) \approx v(x, 0, t) \\
B c \# 4 b:\left.\quad \frac{\partial \phi}{\partial t}\right|_{y=0}+g h=\text { const }
\end{gathered}
$$

A solution for standing waves is given by:

$$
\phi=\left(A e^{k y}+B e^{-k y}\right) \cos k x \sin \omega t
$$

To apply the first two boundary conditions, we calculate the velocity in the horizontal direction:

$$
\begin{gathered}
u=\frac{\partial \phi}{\partial x}=-k\left(A e^{k y}+B e^{-k y}\right) \sin k x \sin \omega t \\
B C \# 1 \Rightarrow u(0, y, t)=-k\left(A e^{k y}+B e^{-k y}\right) \sin 0 \sin \omega t=0 \quad \Rightarrow \sin 0=0 \\
B C \# 2 \Rightarrow u(L, y, t)=-k\left(A e^{k y}+B e^{-k y}\right) \sin k L \sin \omega t=0 \quad \Rightarrow k L=n \pi, n=1,2,3, \ldots
\end{gathered}
$$

For the lowest mode, we select $\mathrm{n}=1$, which gives $k=\pi / L$. To apply the second two boundary conditions, we find the velocity in the vertical direction:

$$
\begin{gathered}
v=\frac{\partial \phi}{\partial y}=k\left(A e^{k y}-B e^{-k y}\right) \cos k x \sin \omega t \\
B C \# 3 \Rightarrow v(x,-H, t)=k\left(A e^{-k H}-B e^{k H}\right) \cos k x \sin \omega t=0 \\
\Rightarrow A e^{-k H}=B e^{k H}=C \\
v=C k\left[e^{k(y+H)}-e^{-k(y+H)}\right] \cos k x \sin \omega t \\
\phi=C\left[e^{k(y+H)}+e^{-k(y+H)}\right] \cos k x \sin \omega t
\end{gathered}
$$

We now apply $B C \# 4 a$ and integrate to solve for the height of the surface disturbance, $h(x, 0, t)$ :

$$
\begin{gathered}
\frac{\partial h}{\partial t} \approx v(x, 0, t)=C k\left[e^{k H}-e^{-k H}\right] \cos k x \sin \omega t \\
h(x, 0, t)=-\frac{c k}{\omega}\left[e^{k H}-e^{-k H}\right] \cos k x \cos \omega t
\end{gathered}
$$

To apply $B C \# 4 b$, we use this expression for $\mathrm{h}(\mathrm{x}, 0, \mathrm{t})$ and calculate $\frac{\partial \phi}{\partial t}$ :

$$
\begin{gathered}
\left.\frac{\partial \phi}{\partial t}\right|_{y=0}=C \omega\left[e^{k H}+e^{-k H}\right] \cos k x \cos \omega t \\
\left.\frac{\partial \phi}{\partial t}\right|_{y=0}+g h=\mathrm{const}=C \omega\left[e^{k H}+e^{-k H}\right] \cos k x \cos \omega t-\frac{g C k}{\omega}\left[e^{k H}-e^{-k H}\right] \cos k x \cos \omega t
\end{gathered}
$$

For this relationship to hold for all $\mathrm{x}, \mathrm{y}$, and t , the constant must be equal to zero. Therefore:

$$
\omega^{2}=g k \frac{e^{k H}-e^{-k H}}{e^{k H}+e^{-k H}}=g k \tanh k H
$$

and hence

$$
f=\frac{\omega}{2 \pi}=\sqrt{\frac{g}{4 \pi L} \tanh \frac{\pi H}{L}}
$$

