An Internet Book on Fluid Dynamics

Solution to Problem 122A

The velocity potential for flow around a sphere of radius R is created by superposition of uniform flow and a 3-D doublet:

$$
\begin{aligned}
\phi & =\underbrace{U x}_{\text {Uniform stream }}+\underbrace{A \frac{\cos \theta}{r^{2}}}_{3-\text { D Doublet }} \\
& =\left(U r+\frac{A}{r^{2}}\right) \cos \theta
\end{aligned}
$$

Thus the radial velocity, u_{r}, is given by:

$$
u_{r}=\frac{\partial \phi}{\partial r}=\left(U-\frac{2 A}{r^{3}}\right) \cos \theta
$$

The zero normal velocity condition $\left(u_{r}=0\right)$ must hold at the surface of the sphere $(r=R)$ so:

$$
\left.u_{r}\right|_{r=R}=\left(U-\frac{2 A}{R^{3}}\right) \cos \theta=0
$$

Therefore the constant A must be:

$$
A=\frac{U R^{3}}{2}
$$

Thus the velocity potential for flow over a sphere is given by:

$$
\phi=U r\left[1+\frac{1}{2}\left(\frac{R}{r}\right)^{3}\right] \cos \theta
$$

The only component of the velocity on the surface of the sphere will be that in the tangential direction, u_{θ}. Therefore, the maximum velocity on the surface of the sphere will occur where u_{θ} is a maximum and, since,

$$
u_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=-U\left[1+\frac{1}{2}\left(\frac{R}{r}\right)^{3}\right] \sin \theta
$$

the velocity on the surface of the sphere $r=R$ is given by

$$
\left.u_{\theta}\right|_{r=R}=-\frac{3}{2} U \sin \theta
$$

This velocity will be a maximum when

$$
|\sin \theta|=1
$$

or where

$$
\theta=\frac{\pi}{2}, \frac{3 \pi}{2}
$$

Thus, the maximum velocity is

$$
\max \left(\left|u_{\theta}\right|_{r=R}\right)=\frac{3}{2} U
$$

