An Internet Book on Fluid Dynamics

Solution to Problem 120N:

The planar potential flow of an incompressible, inviscid fluid past a Rankine half-body is formed by superposition of a source and a uniform stream: so that the velocity potential, ϕ, the streamfunction, ψ,

and the velocities, u_{r} and u_{θ}, are given by

$$
\begin{gather*}
\phi=U x+\frac{Q}{4 \pi} \ln \left(x^{2}+y^{2}\right)=U r \cos \theta+\frac{Q}{2 \pi} \ln r \tag{1}\\
u_{r}=U \cos \theta+\frac{Q}{2 \pi r} \quad ; \quad u_{\theta}=U \sin \theta \tag{2}\\
\psi=U r \sin \theta+\frac{Q \theta}{2 \pi} \tag{3}
\end{gather*}
$$

where $x=r \cos \theta$ and $y=r \sin \theta$.
The streamline that defines a Rankine half-body crosses the x axis (which is also a streamline) at the front stagnation point. The distance between the front stagnation point and the origin, d, is obtained by noting that the velocity, u_{r}, on the negative x axis is given by

$$
\begin{equation*}
\left(u_{r}\right)_{\theta=0}=-U+\frac{Q}{2 \pi r} \tag{4}
\end{equation*}
$$

and therefore $\left(u_{r}\right)_{\theta=0}$ is zero when $r=Q / 2 \pi U$. Therefore $d=Q / 2 \pi U$.
Next we note that the value of the streamfunction on the negative x axis is $\psi=Q / 2$ and this must also be the value of the streamfunction on the Rankine half-body streamline surface. Therefore the shape of the Rankine half-body is given by the equation

$$
\begin{equation*}
(\psi)_{\text {Rankine halfbody }}=\frac{Q}{2}=U r \sin \theta+\frac{Q \theta}{2 \pi} \tag{5}
\end{equation*}
$$

On the y axis, $\theta=\pi / 2$, this yields $y=Q / 4 U$ so the distance c indicated in the figure is $c=Q / 4 U$. Finally the above relations show that far downstream as $x \rightarrow \infty$ the y coordinate of the half-body must asymptote to $Q / 2 U$ and therefore b, the half-width of the body far downstream, must be $Q / 2 U$. These geometric evaluations demonstrate that there is a family of shapes of Rankine half-bodies that become increasingly streamlined as the dimension Q / U becomes smaller.

