## Solution to Problem 120E:

To evaluate the length of the Kelvin oval, we first compute the location of the front and rear stagnation points on the $x$ axis. The potential flow is generated by the superposition of a uniform stream and two

potential vortices as follows:

$$
\begin{align*}
\phi & =U x-\frac{\Gamma}{2 \pi} \theta_{1}+\frac{\Gamma}{2 \pi} \theta_{2}  \tag{1}\\
\psi & =U y+\frac{\Gamma}{2 \pi} \ln r_{1}-\frac{\Gamma}{2 \pi} \ln r_{2} \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& r_{1}=\left[x^{2}+(y-a)^{2}\right]^{1 / 2} \quad \text { and } \quad \theta_{1}=\arctan (y-a) / x  \tag{3}\\
& r_{2}=\left[x^{2}+(y+a)^{2}\right]^{1 / 2} \quad \text { and } \quad \theta_{2}=\arctan (y+a) / x \tag{4}
\end{align*}
$$

Now to find the velocity in the $x$ direction:

$$
\begin{gather*}
u=\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y}  \tag{5}\\
u=U+\frac{\Gamma}{4 \pi}\left[\frac{2(y-a)}{x^{2}+(y-a)^{2}}-\frac{2(y+a)}{x^{2}+(y+a)^{2}}\right] \tag{6}
\end{gather*}
$$

and on the $x$ axis:

$$
\begin{equation*}
u_{y=0}=U-\frac{\Gamma a}{\pi\left(x^{2}+a^{2}\right)} \tag{7}
\end{equation*}
$$

Finding the points on the $x$ axis at which $u=0$ to obtain the front and rear stagnation points:

$$
\begin{equation*}
L=2 a\left[\frac{\Gamma}{\pi a U}-1\right]^{1 / 2} \tag{8}
\end{equation*}
$$

