An Internet Book on Fluid Dynamics

Solution to Problem 120B

The fluid injection at the point B can be modelled as a source of strength 2 Q . In order to satisfy the boundary condition on the vertical axis, an image source of the same strength needs to be added at $x=-a$. This gives a total velocity potential of :

$$
\phi=\frac{1}{2} C\left(x^{2}-y^{2}\right)+\frac{2 Q}{2 \pi} \ln \left[\sqrt{(x-a)^{2}+y^{2}}\right]+\frac{2 Q}{2 \pi} \ln \left[\sqrt{(x+a)^{2}+y^{2}}\right]
$$

Consequently the velocity u is

$$
u=\frac{\partial \phi}{\partial x}=C x+\frac{Q}{\pi} \frac{(x-a)}{\left\{(x-a)^{2}+y^{2}\right\}}+\frac{Q}{\pi} \frac{(x+a)}{\left\{(x+a)^{2}+y^{2}\right\}}
$$

and therefore on the x -axis

$$
\left.u\right|_{y=0}=C x+\frac{Q}{\pi(x-a)}+\frac{Q}{\pi(x+a)}
$$

Therefore the point $x=x^{*}$ where $(u)_{y=0}=0$ is given by

$$
C x^{*}+\frac{Q}{\pi\left(x^{*}-a\right)}+\frac{Q}{\pi\left(x^{*}+a\right)}=0
$$

and therefore

$$
x^{*}=\left[a^{2}-\frac{2 Q}{\pi C}\right]^{\frac{1}{2}}
$$

