
An Internet Book on Fluid Dynamics

Solution to Problem 117A

Euler’s momentum equations for the inviscid planar flow of an incompressible fluid under the action of conservative body
forces (fx = ∂F/∂x and fy = ∂F/∂y where F is the body force potential) are:
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and, since the flow is incompressible, the continuity equation is:
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To eliminate the pressure from the two momentum equations, take ∂/∂y of the first or x momentum equation and ∂/∂x of
the second:
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Subtract the two equations and group terms:
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Finally, substitute in ω = ∂u/∂y − ∂v/∂x and using the continuity equation, ∂u/∂x + ∂v/∂y = 0 to obtain:
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This equation tells us that Dω/Dt = 0 and therefore the vorticity associated with a particular fluid element does not change
as the fluid element moves along in the flow.


