An Internet Book on Fluid Dynamics

Solution to Problem 117A

Euler's momentum equations for the inviscid planar flow of an incompressible fluid under the action of conservative body forces $\left(f_{x}=\partial F / \partial x\right.$ and $f_{y}=\partial F / \partial y$ where F is the body force potential) are:

$$
\begin{aligned}
\rho\left[\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right] & =-\frac{\partial p}{\partial x}+\frac{\partial F}{\partial x} \\
\rho\left[\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right] & =-\frac{\partial p}{\partial y}+\frac{\partial F}{\partial y}
\end{aligned}
$$

and, since the flow is incompressible, the continuity equation is:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

To eliminate the pressure from the two momentum equations, take $\partial / \partial y$ of the first or x momentum equation and $\partial / \partial x$ of the second:

$$
\begin{aligned}
& \rho\left[\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial t}\right)+\frac{\partial}{\partial y}\left(u \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(v \frac{\partial u}{\partial y}\right)\right]=-\frac{\partial^{2} p}{\partial x \partial y}+\frac{\partial^{2} F}{\partial x \partial y} \\
& \rho\left[\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial t}\right)+\frac{\partial}{\partial x}\left(u \frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial x}\left(v \frac{\partial v}{\partial y}\right)\right]=-\frac{\partial^{2} p}{\partial y \partial x}+\frac{\partial^{2} F}{\partial y \partial x}
\end{aligned}
$$

Subtract the two equations and group terms:

$$
\rho\left[\frac{\partial}{\partial t}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+u \frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+v \frac{\partial}{\partial y}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)-\frac{\partial u}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{\partial v}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right]=0
$$

Finally, substitute in $\omega=\partial u / \partial y-\partial v / \partial x$ and using the continuity equation, $\partial u / \partial x+\partial v / \partial y=0$ to obtain:

$$
\frac{\partial \omega}{\partial t}+u \frac{\partial \omega}{\partial x}+v \frac{\partial \omega}{\partial y}=0
$$

This equation tells us that $D \omega / D t=0$ and therefore the vorticity associated with a particular fluid element does not change as the fluid element moves along in the flow.

