An Internet Book on Fluid Dynamics

Solution to Problem 116Ex

Given the following planar flow of an incompressible fluid:

$$
\psi=A x y t
$$

it follows that

$$
u=\frac{\partial \psi}{\partial y}=A x t \quad \text { and } \quad v=-\frac{\partial \psi}{\partial x}=-A y t
$$

Then, since $\partial u / \partial y=0$ and $\partial v / \partial x=0$ and since

$$
\omega=\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}
$$

it follows that $\omega=0$ and the flow is irrorational.
Since the flow is incompressible, inviscid, and irrotational, Bernoulli's equation applies. Bernoulli's equation for an unsteady flow is:

$$
\frac{\partial \phi}{\partial t}+\frac{p}{\rho}+\frac{1}{2}|u|^{2}+g y=\text { constant }
$$

To find ϕ for this equation, we integrate u and v :

$$
\begin{aligned}
u=\frac{\partial \phi}{\partial x} & =A x t \\
\rightarrow \phi & =\frac{A x^{2} t}{2}+c(y) \\
v=\frac{\partial \phi}{\partial y} & =c^{\prime}(y)=-A y t \\
\rightarrow c(y) & =-\frac{A y^{2} t}{2}+c \\
\therefore \phi & =\frac{A t}{2}\left(x^{2}-y^{2}\right)
\end{aligned}
$$

where c is an arbitrary constant. Therefore,

$$
\frac{\partial \phi}{\partial t}=\frac{A}{2}\left(x^{2}-y^{2}\right)
$$

To find $\frac{1}{2}|u|^{2}$:

$$
\begin{aligned}
\frac{1}{2}|u|^{2} & =\frac{1}{2}\left(u^{2}+v^{2}\right) \\
& =\frac{1}{2}\left(A^{2} x^{2} t^{2}+A^{2} y^{2} t^{2}\right)
\end{aligned}
$$

Substituting the above expressions into the Bernoulli equation:

$$
\begin{aligned}
\frac{p}{\rho} & =\text { constant }-g y-\frac{\partial \phi}{\partial t}-\frac{1}{2}|u|^{2} \\
& =\text { constant }-g y-\frac{A^{2} t^{2}}{2}\left(x^{2}+y^{2}\right)-\frac{A}{2}\left(x^{2}-y^{2}\right)
\end{aligned}
$$

Setting $p=p_{0}$ at the origin determines that the constant $=p_{0}$ and

$$
\frac{p}{\rho}=\frac{p_{0}}{\rho}-g y-\frac{A^{2} t^{2}}{2}\left(x^{2}+y^{2}\right)-\frac{A}{2}\left(x^{2}-y^{2}\right)
$$

