An Internet Book on Fluid Dynamics

Solution to Problem 116D

As stated this flow is

- Unsteady flow
- Incompressible, inviscid flow
- $u=U(t), v=w=0$
- negligible body forces

Use these in Euler's equations:

$$
\frac{D \vec{u}}{D t}=-\frac{1}{\rho} \nabla p+\vec{f}
$$

With v and w equal to zero and neglecting body forces, these reduce to:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=-\frac{1}{\rho} \frac{\partial p}{\partial x} \\
& \frac{\partial p}{\partial y}=0, \quad \frac{\partial p}{\partial z}=0
\end{aligned}
$$

The last two expressions imply that $p=p(x, t)$. Since $u=U(t)$, the equation in the x direction becomes:

$$
\frac{\partial u}{\partial t}=-\frac{1}{\rho} \frac{\partial p}{\partial x}
$$

Integrating:

$$
\int \partial p=\int-\rho \frac{d U}{d t} d x=-\rho \frac{d U}{d t} \int d x
$$

since ρ and $\frac{d U}{d t}$ are independent of x. Therefore

$$
p(x, t)=-\rho \frac{d U}{d t} x+f(t)
$$

and, eliminating $f(t)$ using the values at the two ends yields the result

$$
p_{2}-p_{1}=-\rho \frac{d U}{d t} L
$$

Note that if you visualize the fluid in the pipe as a Lagrangian mass of mass $\rho L A$ where A is the cross-sectional area and recognize that the net force acting on this mass in the positive x direction is $\left(p_{1}-p_{2}\right) A$ then the above result is simply Newton's law of motion for that mass.

