An Internet Book on Fluid Dynamics

Solution to Problem 116A:

In this flow within a rotating cylinder containing compressible fluid:

$$
\begin{equation*}
u_{z}=0 ; \frac{\partial}{\partial t} \equiv 0 ; \frac{\partial}{\partial z} \equiv 0 ; u_{r}=0 ; u_{\theta}=\Omega r ; f_{r}=f_{\theta}=f_{z}=0 \tag{1}
\end{equation*}
$$

The equation of motion in the z direction yields $\partial p \partial z=0$ which is already established.
The equation of motion in the θ direction yields $\partial p \partial \theta=0$ and hence as one would expect, the pressure, p, is a function only of the radial position, r.

The equation of motion in the r direction yields

$$
\begin{equation*}
\rho\left[\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}+u_{z} \frac{\partial u_{r}}{\partial z}-\frac{u_{\theta}^{2}}{r}\right]=-\frac{\partial p}{\partial r} \tag{2}
\end{equation*}
$$

and since the first four terms in the square brackets are all zero and the fifth term is equal to $\Omega^{2} r$ it follows since that the pressure p is a function only of r;

$$
\begin{equation*}
\frac{\partial p}{\partial r}=\frac{d p}{d r}=\rho \Omega^{2} r \tag{3}
\end{equation*}
$$

Since $p=A \rho^{k}$ it follows that

$$
\begin{equation*}
d p=\left\{\frac{p}{A}\right\}^{1 / k} \Omega^{2} r d r \tag{4}
\end{equation*}
$$

and by integration

$$
\begin{equation*}
p^{(k-1) / k}=(k-1) \Omega^{2} r^{2} / 2 k A^{1 / k}+\text { constant } \tag{5}
\end{equation*}
$$

and since $p=p_{0}$ at $r=0$

$$
\begin{equation*}
p^{(k-1) / k}=p_{0}^{(k-1) / k}+(k-1) \Omega^{2} r^{2} / 2 k A^{1 / k} \tag{6}
\end{equation*}
$$

