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Solution to Problem 116A:

In this flow within a rotating cylinder containing compressible fluid:

uz = 0 ;
∂
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≡ 0 ;

∂
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≡ 0 ; ur = 0 ; uθ = Ωr ; fr = fθ = fz = 0 (1)

The equation of motion in the z direction yields ∂p ∂z = 0 which is already established.

The equation of motion in the θ direction yields ∂p ∂θ = 0 and hence as one would expect, the pressure,
p, is a function only of the radial position, r.

The equation of motion in the r direction yields
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and since the first four terms in the square brackets are all zero and the fifth term is equal to Ω2r it follows
since that the pressure p is a function only of r;
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=

dp
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= ρΩ2r (3)

Since p = Aρk it follows that

dp =
{ p

A

}1/k

Ω2rdr (4)

and by integration
p(k−1)/k = (k − 1)Ω2r2/2kA1/k + constant (5)

and since p = p0 at r = 0

p(k−1)/k = p
(k−1)/k
0 + (k − 1)Ω2r2/2kA1/k (6)


