An Internet Book on Fluid Dynamics

Solution to Problem 115H

The streamfunction for this planar incompressible flow is given as

$$
\psi=A\left(x^{2} y-y^{3} / 3\right)
$$

where A is a known constant.
a) It follows that the velocity components are

$$
\begin{aligned}
u & =\frac{\partial \psi}{\partial y}=A\left(x^{2}-y^{2}\right) \\
v & =-\frac{\partial \psi}{\partial x}=-2 A x y
\end{aligned}
$$

b) By definition the vorticity, ω, is given by:

$$
\omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0
$$

and therefore the flow is irrotational.
c) Construct the streamline for $\psi=0$:

$$
y\left(x^{2}-y^{2} / 3\right)=0
$$

so $\psi=0$ on the lines $y=0$ and $y= \pm \sqrt{3} x$.
Also note that on $y=0$ we have $u=A x^{2}$ and $v=0$. And along $x=0$ we have $u=-A y^{2}$ and $v=0$. Thus the flow is:

d) Since the flow is irrotational, inviscid and incompressible so we can use Bernoulli's equation to determine the pressure:

$$
\begin{array}{r}
p+\frac{1}{2} \rho|u|^{2}=\text { const } \\
|u|^{2}=u^{2}+v^{2}=A^{2}\left(x^{2}+y^{2}\right)^{2} \\
\therefore p+\frac{1}{2} \rho A^{2}\left(x^{2}+y^{2}\right)^{2}=\text { const }
\end{array}
$$

Setting $p=p_{0}$ at the origin this yields

$$
p=p_{0}-\frac{1}{2} \rho A^{2}\left(x^{2}+y^{2}\right)^{2}
$$

A line of constant pressure (known as an isobar) is therefore a circle centered at the origin.

