An Internet Book on Fluid Dynamics

Solution to Problem 115G

The velocity, u, in the x direction for this planar incompressible flow is

$$
u=U\left\{\frac{2 y}{a x}-\frac{y^{2}}{a^{2} x^{2}}\right\}
$$

where a is a constant. Since $u=\partial \psi / \partial y$, where ψ is the streamfunction, it follows that

$$
\frac{\partial \psi}{\partial y}=U\left\{\frac{2 y}{a x}-\frac{y^{2}}{a^{2} x^{2}}\right\}
$$

and this can be integrated with respect to y to yield

$$
\psi=U\left\{\frac{y^{2}}{a x}-\frac{y^{3}}{3 a^{2} x^{2}}\right\}+C(x)
$$

where $C(x)$ is the integration constant, an unknown function of x alone. Then, differentiating with respect to x we obtain the velocity, v, in the y direction:

$$
v=-\frac{\partial \psi}{\partial x}=U\left\{\frac{y^{2}}{a x^{2}}-\frac{2 y^{3}}{3 a^{2} x^{3}}\right\}+\frac{d C}{d x}
$$

where $d C / d x$ will also just be a function of x.
But we also know that, at the wall $y=0$, we must have zero velocity, v, normal to the wall and therefore, from the last equation, $d C / d x$ must be zero at the wall, $y=0$. But since $d C / d x$ is only a function of $x d C / d x$ must therefore be zero everywhere and hence

$$
v=-\frac{\partial \psi}{\partial x}=U\left\{\frac{y^{2}}{a x^{2}}-\frac{2 y^{3}}{3 a^{2} x^{3}}\right\}
$$

