Solution to Problem 115E:

On the planar, incompressible flow given by $\psi=$ Axyt:
(a) Streamlines are lines of constant ψ at some specific time, t, and the equation for those lines is therefore

$$
\begin{equation*}
x y=\psi / A t=\text { constant } \tag{1}
\end{equation*}
$$

so the flow is as follows:

(b) The velocities of the flow are:

$$
\begin{gather*}
u(x, y, t)=\frac{\partial \psi}{\partial y}=A x t \tag{2}\\
v(x, y, t)=-\frac{\partial \psi}{\partial x}=-A y t \tag{3}
\end{gather*}
$$

(c) The pathlines of the flow: Since $u=A x t=d x / d t$ along a pathline it follows by integration that

$$
\begin{equation*}
\ln x=A t^{2} / 2+\text { constant } \tag{4}
\end{equation*}
$$

and the constant is $\ln x_{0}$ so that

$$
\begin{equation*}
x=x_{0} \exp \left(A t^{2} / 2\right) \tag{5}
\end{equation*}
$$

Similarly since $v=-A y t=d y / d t$ along the pathline

$$
\begin{equation*}
y=y_{0} \exp \left(-A t^{2} / 2\right) \tag{6}
\end{equation*}
$$

