An Internet Book on Fluid Dynamics

Solution to Problem 115D

You are given the following streamfunction for a planar incompressible flow:

$$
\psi=U r\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \sin \theta
$$

where U and r_{0} are constants and r, θ are polar coordinates. The velocities, given by the derivatives of the streamfunction are therefore

$$
\begin{gathered}
u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=\frac{1}{r} U r\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \cos \theta=U\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \cos \theta \\
u_{\theta}=-\left[U\left(1-\frac{r_{0}^{2}}{r^{2}}\right)+U r\left(2 \frac{r_{0}^{2}}{r^{3}}\right)\right] \sin \theta=-U\left(1+\frac{r_{0}^{2}}{r^{2}}\right) \sin \theta
\end{gathered}
$$

a) The velocities on a circle of radius r_{0} are:

$$
\begin{gathered}
\left.u_{r}\right|_{r=r_{0}}=0 \\
\left.u_{\theta}\right|_{r=r_{0}}=-2 U \sin \theta
\end{gathered}
$$

and since there is no velocity normal to the circle $r=r_{0}$ this must be a streamline. From the expression for ψ it is the streamline with $\psi=0$.
b) In addition from the expression for ψ we note that on the lines $\theta=0, r>r_{0}$, and $\theta=\pi, r>r_{0}$ the streamfunction $\psi=0$ and these lines are therefore part of the same streamline.
c) The sktech below shows the form of some of the other streamlines for $\psi>0$.

d) For $r \gg r_{0}$ it follows that $u_{r} \rightarrow U \cos \theta$ and $u_{\theta} \rightarrow-U \sin \theta$ and consequently the magnitude of the flow velocity is $|\vec{u}|=\sqrt{u_{r}^{2}+u_{\theta}^{2}}=U$ and the direction is in the $\theta=0$ direction. Consequently the flow far away is a uniform stream of magnitude U in the $\theta=0$ direction.
e) The streamfunction ψ represents the flow of a uniform stream of magnitude U around a stationary cylinder of radius r_{0}.

