An Internet Book on Fluid Dynamics

Solution to Problem 115B

Given that

$$
u=U\left(\frac{2 y}{a x}-\frac{y^{2}}{a^{2} x^{2}}\right)
$$

it follows that

$$
\frac{\partial u}{\partial x}=U\left[-\frac{2 y}{a x^{2}}+2 \frac{y^{2}}{a^{2} x^{3}}\right]
$$

Now the continuity equation for a $2-\mathrm{D}$, incompressible flow is

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

and therefore it follows that

$$
\frac{\partial v}{\partial y}=U\left[\frac{2 y}{a x^{2}}-2 \frac{y^{2}}{a^{2} x^{3}}\right]
$$

Integrating this

$$
v(x, y)=\int U\left[\frac{2 y}{a x^{2}}-2 \frac{y^{2}}{a^{2} x^{3}}\right] \partial y=U\left[\frac{y^{2}}{a x^{2}}-\frac{2}{3} \frac{y^{3}}{a^{2} x^{3}}\right]+f(x)
$$

and since $v(x, 0)=f(x)=0$ it follows that

$$
v(x, y)=U\left[\frac{y^{2}}{a x^{2}}-\frac{2}{3} \frac{y^{3}}{a^{2} x^{3}}\right]
$$

