An Internet Book on Fluid Dynamics

Solution to Problem 115A

Given $u=A(y-a x)$ and that $u=\partial \psi / \partial y$ it follows that

$$
\frac{\partial \psi}{\partial y}=A(y-a x)
$$

and therefore by integration

$$
\psi=\frac{A y^{2}}{2}-A a x y+c(x)
$$

Note $c(x)$ is an arbitrary constant in ψ which we can set to zero. It follows that

$$
v=-\frac{\partial \psi}{\partial x}=A a y
$$

In summary, the streamfunction and velocities are

$$
\begin{aligned}
\psi & =\frac{A y^{2}}{2}-A a x y \\
u & =A(y-a x) \\
v & =A a y
\end{aligned}
$$

Now consider the conditions at the sloping wall

$$
\begin{aligned}
\frac{\Delta y}{\Delta x}=b=\frac{v}{u} & =\frac{A a y}{A(y-a x)} \text { where } y=b x \\
b & =\frac{A a b x}{A(b x-a x)} \\
b & =\frac{a b}{(b-a)} \\
\therefore b & =2 a
\end{aligned}
$$

