Solution to Problem 114C:

Consider the elemental control volume in cylindrical coordinates (r, θ, z) as sketched below:

The mass flux of the fluid of density ρ into the control volume through the side AEHD is

$$
\begin{equation*}
\rho u_{r} r d \theta d z \tag{1}
\end{equation*}
$$

and the mass flux out through BFGC is

$$
\begin{equation*}
\rho u_{r} r d \theta d z+\frac{\partial\left(\rho u_{r}\right)}{\partial r} d r r d \theta d z \tag{2}
\end{equation*}
$$

where we have neglected terms second order in $d r$ and $d \theta$. Therefore the net flux in through sides AEHD and BFGC is

$$
\begin{equation*}
\frac{\partial \rho u_{r}}{\partial r} d r r d \theta d z \tag{3}
\end{equation*}
$$

Similarly the net flux in through sides ABFE and DCGH is

$$
\begin{equation*}
\frac{1}{r} \frac{\partial \rho u_{\theta}}{\partial \theta} d r r d \theta d z \tag{4}
\end{equation*}
$$

and the net flux in through sides ABCD and EFGH is

$$
\begin{equation*}
\frac{\partial \rho u_{z}}{\partial z} d r r d \theta d z \tag{5}
\end{equation*}
$$

The sum of these net mass fluxes in must therefore be equal to the increase in mass within the control volume which is given by

$$
\begin{equation*}
\frac{\partial \rho}{\partial t} d r r d \theta d z \tag{6}
\end{equation*}
$$

Therefore the continuity equation in this cylindrical coordinate system is

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial\left(\rho r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial\left(\rho u_{\theta}\right)}{\partial \theta}+\frac{\partial\left(\rho u_{z}\right)}{\partial z}=0 \tag{7}
\end{equation*}
$$

where $\left(u_{r}, u_{\theta}, u_{z}\right)$ denote the velocity components in the (r, θ, z) directions.

