An Internet Book on Fluid Dynamics

Solution to Problem 114A:

PART 1:

Streamlines: Streamlines are tangent to the velocity vectors at a particular moment in time, t. At this time the velocity components are

$$
\begin{equation*}
u_{i}=\frac{x_{i}}{\left(1+a_{i} t\right)} \tag{1}
\end{equation*}
$$

and the streamline are therefore defined parametrically by $x_{i}(\eta)$ where η is a parametric variable and

$$
\begin{equation*}
\frac{d x_{i}}{d \eta}=\frac{x_{i}}{\left(1+a_{i} t\right)} \tag{2}
\end{equation*}
$$

where it follows by integration that the streamlines at time t are given parametrically by

$$
\begin{equation*}
\frac{x_{i}(\eta)}{x_{i}(0)}=\exp \left(\frac{\eta}{1+a_{i} t}\right) \tag{3}
\end{equation*}
$$

where $x_{i}(0)$ is a point on the streamline at $\eta=0$.
Pathlines: Pathlines are routes traced out by individual particles. In this case the curve traced out by an individual particle is given by $x_{i}(t)$ where

$$
\begin{equation*}
u_{i}=\frac{d x_{i}}{d t}=\frac{x_{i}}{\left(1+a_{i} t\right)} \tag{4}
\end{equation*}
$$

which by integration yields

$$
\begin{equation*}
\frac{x_{i}(t)}{x_{i}(0)}=\left[1+a_{1} t\right]^{1 / a_{i}} \tag{5}
\end{equation*}
$$

where $x_{i}=x_{i}(0)$ is a reference location for the streamline.

PART 2:

If $a_{3}=0$ the flows are planar in the $\left(x_{1}, x_{2}\right)$ plane. With $a_{1}=2$ and $a_{2}=1$ streamlines are given by

$$
\begin{equation*}
x_{1}(\eta) / x_{1}(0)=\exp (\eta / 1+2 t) \quad ; \quad x_{2}(\eta) / x_{2}(0)=\exp (\eta / 1+t) \tag{6}
\end{equation*}
$$

and therefore the equation for the streamline is

$$
\begin{equation*}
x_{1}=C x_{2}^{(1+t) /(1+2 t)} \tag{7}
\end{equation*}
$$

where C is some constant. In contrast the pathlines are described by

$$
\begin{equation*}
\frac{x_{1}(t)}{x_{1}(0)}=[1+2 t]^{1 / 2} \quad ; \quad \frac{x_{2}(t)}{x_{2}(0)}=[1+t] \tag{8}
\end{equation*}
$$

and therefore the equation for the pathlines is

$$
\begin{equation*}
\left\{\frac{x_{1}}{x_{1}(0)}\right\}^{2}=2\left\{\frac{x_{2}}{x_{2}(0)}\right\}-1 \tag{9}
\end{equation*}
$$

PART 3:

If all $a_{i}=1$ the streamlines are given by

$$
\begin{equation*}
\frac{x_{i}(\eta)}{x_{i}(0)}=\exp \left(\frac{\eta}{1+t}\right) \tag{10}
\end{equation*}
$$

and are therefore straight lines.
The pathlines are given by

$$
\begin{equation*}
\frac{x_{i}(t)}{x_{i}(0)}=[1+t] \tag{11}
\end{equation*}
$$

and these are also straight lines.

