An Internet Book on Fluid Dynamics

Solution to Problem 112B

Since chemical constituents are carried along with the fluid

$$
\frac{\mathrm{D} c}{\mathrm{D} t}=\frac{\partial c}{\partial t}+u \frac{\partial c}{\partial x}=\alpha
$$

But the flow is steady and therefore $\frac{\partial c}{\partial t}=0$ and $c(x)$ is only a function of x. Therefore,

$$
\frac{\partial c}{\partial x}=\frac{\alpha}{u}=\frac{\alpha}{u_{0}}\left(\frac{x_{0}}{x}\right)^{2}
$$

Integrating,

$$
c=-\frac{\alpha x_{0}^{2}}{u_{0} x}+\quad \text { constant }
$$

But $c=c_{0}$ at $x=x_{0}$. Therefore

$$
c-c_{0}=\frac{\alpha x_{0}^{2}}{u_{0}}\left[\frac{1}{x_{0}}-\frac{1}{x}\right]
$$

