An Internet Book on Fluid Dynamics

Solution to Problem 112A

The Lagrangian derivative in three dimensions can be written as

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{x} \frac{\partial}{\partial x}+u_{y} \frac{\partial}{\partial y}+u_{z} \frac{\partial}{\partial z}
$$

In this problem the flow is steady, so the $\partial / \partial t$ term vanishes. The problem statement also says the velocity in the x-direction is the only velocity we need to consider, so the last two terms on the right hand side of the above equation vanish. As a result, we have

$$
\frac{D}{D t}=u_{x} \frac{\partial}{\partial x}=u_{x} \frac{d}{d x}
$$

The notation in the problem statement tells you

$$
u_{x} \equiv u=\left(\frac{u_{o}}{x_{o}}\right) x
$$

We also know that the rate of change of the concentration, c, of chemical constituents within the fluid (that is to say travelling with the fluid) is α so that

$$
\frac{D c}{D t}=\alpha
$$

and therefore

$$
\frac{D c}{D t}=u \frac{d c}{d x}=\alpha
$$

so that

$$
\alpha=\left(\frac{u_{o}}{x_{o}}\right) x \frac{d c}{d x}
$$

or

$$
\begin{gathered}
\frac{d x}{x}=\frac{u_{o}}{x_{o} \alpha} d c \\
\int_{x_{o}}^{x} \frac{d x}{x}=\frac{u_{o}}{x_{o} \alpha} \int_{c_{o}}^{c} d c \\
\ln x-\ln x_{o}=\frac{u_{o}}{x_{o} \alpha}\left(c-c_{o}\right)
\end{gathered}
$$

and thus we arrive at

$$
c=\frac{\alpha x_{o}}{u_{o}} \ln \left(\frac{x}{x_{o}}\right)+c_{o}
$$

