An Internet Book on Fluid Dynamics

Solution to Problem 109E:

The force transmitted to the automobile through the film of liquid under the tires is given by $\mu A u / h$. Therefore the equation of motion applied to the automobile yields

$$
\begin{equation*}
m \frac{d u}{d t}=-\frac{\mu A u}{h} \text { and } \frac{1}{u} \frac{d u}{d t}=-\frac{\mu A}{m h} \tag{1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\ln u(t)=-\frac{\mu A}{m h} t+C \tag{2}
\end{equation*}
$$

where C is an integration constant. Denoting the initial velocity at $t=0$ by U it follows that $C=U$ so that

$$
\begin{equation*}
\frac{u}{U}=\frac{1}{U} \frac{d x(t)}{d t}=\exp \left\{-\frac{\mu A t}{m h}\right\} \tag{3}
\end{equation*}
$$

where $x(t)$ is the distance traveled after time, t. Integrating

$$
\begin{equation*}
x(t)=-\frac{m h U}{\mu A} \exp \left\{-\frac{\mu A t}{m h}\right\}+C_{2} \tag{4}
\end{equation*}
$$

where C_{2} is another integration constant. Setting $x(0)=0$, it follows that $C_{2}=-m h U / \mu A$ and therefore the distance L traveled before coming to rest is given by

$$
\begin{equation*}
L=\frac{m h U}{\mu A}\left[1-\exp \left\{-\frac{\mu A t}{m h}\right\}\right] \tag{5}
\end{equation*}
$$

The automobile comes to rest as t tends to infinity and this occurs at a distance

$$
\begin{equation*}
L \rightarrow \frac{m h U}{\mu A} \tag{6}
\end{equation*}
$$

With $m=1000 \mathrm{~kg}, A=0.1 \mathrm{~m}, h=0.0001 \mathrm{~m}, U=10 \mathrm{~m} / \mathrm{s}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \mathrm{s}$, this yields $L=10 \mathrm{~km}$. While this is ridiculous, the answer does demonstrate that automobiles can hydroplane for a long distance.

