Solution to Problem 109C

The characteristic parameters and variables of this assignment are giving in table 1.

Parameter	Units
length L	m
dynamic viscosity μ	kg/ms
density ρ	kg/m^3
velocity U	m/s
force	$kg m/s^2$

Table 1: Units.

By combining the units giving in table 1, it transpires that there are two possible combinations which yield the units of force. The parameter related to the viscous force F_v is:

$$P_1 = U\mu L = \left[\frac{m}{s}\right] \left[\frac{kg}{ms}\right] [m] = \left[\frac{kg m}{s^2}\right]$$

while the parameter related to the inertial force F_i is:

$$P_2 = U^2 \rho L^2 = \left[\frac{m}{s}\right]^2 \left[\frac{kg}{m^3}\right] \left[m\right]^2 = \left[\frac{kg}{s^2}\right]$$

By dividing the typical inertial force by the viscous force, the Reynolds number is obtained:

$$Re = \frac{P_2}{P_1} = \frac{U^2 \rho L^2}{U \mu L} = \frac{\rho U L}{\mu} = \frac{U L}{\nu}$$

with kinematic viscosity $\nu = \mu/\rho$.