An Internet Book on Fluid Dynamics

Solution to Problem 109A

It is assumed that the flow is laminar and the fluid is Newtonian, such that the fluid displays a linear dependence of the shear stress on the shear rate. The experiment is conducted with fluid in between two concentric cylinders with one cylinder fixed. Since the radius, $D / 2$, is much larger than the gap width, $t \ll D / 2$, the flow is essentially Couette flow. In the assignment, the parameters are as given in table 1.

Parameter	Value	Units
diameter D	0.02	m
length L	0.2	m
thickness t	1×10^{-4}	m
dynamic viscosity μ	0.1	$\mathrm{~kg} / \mathrm{ms}$
rotational speed n	6000	rpm

Table 1: Given parameters.
The torque T is defined as the force F multiplied by the radius $D / 2$:

$$
T=F \frac{D}{2}=\sigma A \frac{D}{2}
$$

where the shear stress sigma acts in the circumferential direction for Couette flow and can be written as:

$$
\sigma=\mu \frac{d U}{d y}=\mu \frac{U}{t}
$$

given the linear velocity profile. The velocity U in this case can be calculated from:

$$
U=n \frac{\pi D}{60}=2 \pi \mathrm{~m} / \mathrm{s} \approx 6.283 \mathrm{~m} / \mathrm{s}
$$

Thus, the torque is given by:

$$
\begin{aligned}
T & =\sigma A \frac{D}{2} \\
& =\left(\mu \frac{U}{t}\right)(\pi D L)\left(\frac{D}{2}\right) \\
& =\mu \frac{n \pi^{2} D^{3} L}{120 t} \approx 0.790 \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~m}^{2}}
\end{aligned}
$$

The power P is defined as the torque T multiplied by the angular velocity ω :

$$
\begin{aligned}
P & =T \omega \\
& =T \frac{U}{D / 2} \\
& =\mu \frac{n^{2} \pi^{3} D^{3} L}{3600 t} \approx 496 \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~m}^{3}}
\end{aligned}
$$

