An Internet Book on Fluid Dynamics

Solution to Problem 108E

The shape of the pendant droplet will be governed by a balance of the pressure on either side of the surface with the curvature at that point:

$$
p_{I}-p_{O}=\frac{S}{R}
$$

where the pressure in the atmosphere is denoted by p_{O} (assumed uniform) and the pressure in the liquid is denoted by p_{I} which varies with the vertical elevation, y.

If we denote the half-breadth of the drop by $b(y)$ then the curvature at any height will be given by:

$$
\frac{1}{R}=\frac{\frac{d^{2} b}{d y^{2}}}{\left[1+\left(\frac{d b}{d y}\right)^{2}\right]^{3 / 2}}
$$

The last piece that we need is a description of how the pressure varies throughout the droplet. At the origin, the pressure will have some value, \hat{p}, different from the atmospheric pressure, p_{A}. As we move vertically through the droplet, the pressure will decrease hydrostatically giving:

$$
\begin{gathered}
p_{I}=\hat{p}-\rho g y \\
p_{O}=p_{A}
\end{gathered}
$$

Combining all of this, the equation to determine the shape of the pendant droplet will be:

$$
\frac{S \frac{d^{2} b}{d y^{2}}}{\left[1+\left(\frac{d b}{d y}\right)^{2}\right]^{3 / 2}}=\left(\hat{p}-p_{A}\right)-\rho g y
$$

To nondimensionalize, we use:

$$
\begin{array}{rlrl}
b & =b^{\star} \sqrt{\frac{S}{\rho g}} & y & =y^{\star} \sqrt{\frac{S}{\rho g}} \\
\frac{d b}{d y} & =\frac{d b^{\star}}{d y^{\star}} & \frac{d^{2} b}{d y^{2}}=\sqrt{\frac{\rho g}{S}} \frac{d^{2} b^{\star}}{d y^{\star 2}}
\end{array}
$$

This leads to the following differential equation which needs to be solved to find $b(y)$: in which the single parameter is the first term on the right hand side:

$$
\frac{\frac{d^{2} b^{\star}}{d y^{\star 2}}}{\left[1+\left(\frac{d b^{\star}}{d y^{\star}}\right)^{2}\right]^{3 / 2}}=\frac{\left(\hat{p}-p_{A}\right)}{\sqrt{\rho g S}}-y^{\star}
$$

The solutions can be obtained numerically as a family of shapes with the single parameter $\left(\hat{p}-p_{A}\right) / \sqrt{\rho g S}$.

