## An Internet Book on Fluid Dynamics

## Solution to Problem 108D

Consider the pressure at four points:

1. Any point in the air just above the surface
2. The point in the fluid just below point 1
3. The point vertically below point 2 on the horizontal line
4. A point far off to the right where the surface is horizontal. This point is on the same horizontal line as point 3 .


The pressure at each point is:

$$
\begin{aligned}
p_{1} & =p_{a t m}=p_{2}+S \frac{d^{2} y}{d x^{2}} \\
p_{2} & =p_{3}-\rho g y \\
p_{3} & =p_{a t m} \\
p_{4} & =p_{a t m}
\end{aligned}
$$

where $S$ is the surface tension and $y=y(x)$ is the equation of the meniscus. At point 4 as $r \rightarrow \infty, S \frac{d^{2} y}{d x^{2}}=\frac{S}{r} \rightarrow 0$. From these equations,

$$
\begin{aligned}
p_{1}=p_{a t m} & =p_{2}+S \frac{d^{2} y}{d x^{2}} \\
& =\left(p_{3}-\rho g y\right)+S \frac{d^{2} y}{d x^{2}} \\
& =p_{a t m}-\rho g y+S \frac{d^{2} y}{d x^{2}} \\
\rightarrow \frac{d^{2} y}{d x^{2}} & =\frac{\rho g y}{S}
\end{aligned}
$$

The solution for the second order differential equation has the form:

$$
\begin{equation*}
y(x)=A e^{\alpha x}+B e^{-\alpha x} \tag{1}
\end{equation*}
$$

where $\alpha=\sqrt{\frac{\rho g}{S}}$ and the constants $A$ and $B$ can be found using the boundary conditions

$$
\begin{array}{ll}
@ x=0: & \frac{d y}{d x}=\tan (\theta+\pi / 2)=\cot (\theta) \\
@ x=\infty: & y=0 \\
\rightarrow A=0, & B=\sqrt{\frac{S}{\rho g}} \cot \theta
\end{array}
$$

$$
\therefore \quad y=\sqrt{\frac{S}{\rho g}} \cot \theta e^{-\left(\sqrt{\frac{\rho g}{S}}\right) x}
$$

and

$$
h=\sqrt{\frac{S}{\rho g}} \cot \theta
$$

