An Internet Book on Fluid Dynamics

Solution to Problem 108C

A soap bubble hangs from a horizontal circular ring of radius r equal to 3 cm . The mass of the soapy water comprising the bubble is $m=.0014 \mathrm{~kg}$. It is assumed that the bubble is spherical and any contact angle effects at the junction of the ring are negligible.
[1] The weight of the soap film must balance the component of the surface tension force, S. Note that there are two surfaces to consider.

$$
\begin{aligned}
m g & =2[2 \pi r S \cos \theta] \\
\theta & =\cos ^{-1}\left[\frac{m g}{4 \pi r S}\right] \\
& =\cos ^{-1}\left[\frac{(0.0014 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{4 \pi(0.03 \mathrm{~m})\left(0.05 \mathrm{~kg} / \mathrm{s}^{2}\right.}\right] \\
\rightarrow \theta & \approx 43.3^{\circ}
\end{aligned}
$$

[2] The radius of the soap bubble follows from the geometry:

$$
\begin{aligned}
\cos \theta & =\frac{r}{R} \\
R & =\frac{r}{\cos \theta} \\
& =\frac{3 \mathrm{~cm}}{\cos 43.3^{\circ}} \\
\rightarrow R & \approx 4.12 \mathrm{~cm}
\end{aligned}
$$

[3] The thickness of the soap bubble follows from the density of the soapy water ($\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$) and the mass ($m=$.0014 kg). By assuming $t \ll R$, the approximate volume is given by the (surface area) $\times($ thickness). The surface area follows from integration:

$$
A(\theta)=2 \pi R^{2} \int_{-\pi / 2}^{\theta} \cos \phi d \phi
$$

$$
\begin{aligned}
& =2 \pi R^{2}(1+\sin \theta) \\
\therefore m & =\rho V \approx \rho A(\theta) t \\
\rightarrow t & =\frac{m}{\rho A(\theta)}=\frac{0.0014 \mathrm{~kg}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(2 \pi)(0.0412 \mathrm{~m})^{2}\left(1+\sin \left(43.3^{\circ}\right)\right)} \\
t & =7.78 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

