An Internet Book on Fluid Dynamics

Solution to Problem 108B

At the contact circle, the force pulling the bubble down is S times the circumference of the circle:

$$
S 2 \pi R \sin \theta
$$

The vertical component of this force is:

$$
S 2 \pi R \sin ^{2} \theta
$$

This must be balanced by the buoyancy force acting upward which is:

$$
\rho g V
$$

where V is the volume of the bubble:

$$
V=\pi h^{2}\left(R-\frac{h}{3}\right)
$$

where h is the height of the bubble:

$$
h=R(1+\cos \theta)
$$

So the buoyancy force is:

$$
\rho g \pi R^{3}(1+\cos \theta)^{2}\left(1-\frac{1+\cos \theta}{3}\right)
$$

Therefore equilibrium requires that:

$$
S 2 \pi R \sin ^{2} \theta=\rho g \pi R^{3}(1+\cos \theta)^{2}\left(1-\frac{1+\cos \theta}{3}\right)
$$

and, after some algebra, this yields:

$$
R=\left[\frac{6 S(1-\cos \theta)}{\rho g(1+\cos \theta)(2-\cos \theta)}\right]^{\frac{1}{2}}
$$

