An Internet Book on Fluid Dynamics

Solution to Problem 108A

Denoting the atmospheric pressure by $p_{a t m}$ and the pressure in the water just below the interface by $p_{\text {water }}$ it follows that:

$$
p_{w a t e r}=p_{a t m}-\frac{2 S \cos \theta}{r}
$$

where, in addition, the hydrostatic gradient of pressure in the water means that

$$
p_{a t m}=p_{\text {water }}+\rho g h
$$

Thus,

$$
\rho g h=\frac{2 S \cos \theta}{r} \Longrightarrow \quad \Longrightarrow=\frac{2 S \cos \theta}{\rho g r}=\frac{2 \times 0.07 \times \cos 15^{\circ}}{1000 \times 9.8 \times 5 \times 10^{-3}} \mathrm{~N} / \mathrm{m}^{2}
$$

So

$$
h=2.76 \times 10^{-2} \mathrm{~m}
$$

The smallest pressure that the liquid can withstand without vaporizing is 0.017 atm . When $p_{\text {water }}$ is equal to this critical values it follows that the maximum height, $h=h_{\max }$, is given by:

$$
\rho g h_{\max }=(1-0.017) \times 1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \quad \Longrightarrow \quad h_{\max }=10.15 \mathrm{~m}
$$

The radius necessary is obtained from the force balance across the interface is:

$$
r=\frac{2 S \cos \theta}{\rho g h_{\max }}=1.36 \times 10^{-6} \mathrm{~m} \quad \Longrightarrow \quad \text { Diameter }=2.72 \times 10^{-6} \mathrm{~m}
$$

