An Internet Book on Fluid Dynamics

Solution to Problem 104D

The forces on the rectangular block of concrete are:

1. The force on the left hand side due to the pressure which will be equal to

$$
\frac{1}{2} \rho g\left\{\frac{3 a}{4}\right\}^{2}
$$

per unit dimension perpendicular to the sketch. This force will act horizontally with a line of action that is at a height $a / 4$ (one third of the depth) above the point A.
2. The force due to the pressure underneath the block. Since the pressure underneath the block is $3 \rho g a / 4$ above atmospheric pressure, this force has a magnitude equal to

$$
\rho g\left\{\frac{3 a b}{4}\right\}
$$

per unit dimension perpendicular to the sketch. This force will act vertically upward with a line of action which is a distance $b / 2$ from the point A.
3. The weight of the block $5 \rho g a b / 2$ per unit dimension perpendicular to the sketch. It acts vertically downward through the center of mass and therefore has a line of action which is a distance $b / 2$ from the point A.

To determine the stability of the block we take moments about the point A. The net clockwise moment, M, is therefore given by

$$
M=\frac{1}{2} \rho g\left\{\frac{3 a}{4}\right\}^{2} \frac{a}{4}+\rho g\left\{\frac{3 a b}{4}\right\} \frac{b}{2}-\frac{5 \rho g a b}{2} \frac{b}{2}
$$

and this moment will become positive when

$$
a^{2}>\frac{7 \times 16}{9} b^{2}
$$

so that the critical ratio becomes

$$
\frac{b}{a}=\left\{\frac{9}{7 \times 16}\right\}^{\frac{1}{2}}=0.283
$$

