An Internet Book on Fluid Dynamics

Solution to Problem 103A:

In any static body of fluid the pressure, p, varies with elevation, y, according to

$$
\begin{equation*}
\frac{\partial p}{\partial y}=-\rho g \tag{1}
\end{equation*}
$$

where the density ρ and the acceleration due to gravity, g, may be functions y. Now consider the forces

acting on a body immersed in a fluid as shown above. Consider a vertical cylindrical element of crosssection, $d A$, and length, h, and denote the pressure in the fluid at the lower end by p. Then the pressure at the top end will be

$$
\begin{equation*}
p+\int_{0}^{h} \frac{\partial p}{\partial y} d y=p-\int_{0}^{h} \rho(y) g d y \tag{2}
\end{equation*}
$$

and therefore the net upward buoyancy force on the element $d A$ will be

$$
\begin{equation*}
d A \int_{0}^{h} \rho(y) g d y \tag{3}
\end{equation*}
$$

and the total buoyancy force will be given by integrating this over the whole of the displaced volume, V :

$$
\begin{equation*}
\int_{V}\left\{\int_{0}^{h} \rho(y) g d y\right\} d A \tag{4}
\end{equation*}
$$

But this expression is also just the weight of the displaced fluid and therefore Archimedes principle also holds for a compressible fluid.

