Solution to Problem 102D:

By definition the density is the ratio of the mass, m, to the volume, V, and in this two-phase flow the mass, m, is given by the sum of the mass of vapor and the mass of liquid:

$$
\begin{equation*}
m=\alpha \rho_{A} V+(1-\alpha) \rho_{L} V \tag{1}
\end{equation*}
$$

where the air density is denoted by ρ_{A} and the water density by ρ_{L}. Therefore the effective mixture density, ρ, is given by

$$
\begin{equation*}
\rho=\alpha \rho_{A}+(1-\alpha) \rho_{L} \approx(1-\alpha) \rho_{L} \tag{2}
\end{equation*}
$$

Tracing the pressure, p, around the manometer (denoting the :

$$
\begin{gather*}
p_{1}=p_{2}+\rho_{A} g h ; p_{3}=p_{1}+\rho_{L} g y_{1} \tag{3}\\
p_{4}=p_{2}+\rho_{L} g\left(y_{2}-H\right) ; \quad p_{3}=p_{4}+\rho g H \tag{4}
\end{gather*}
$$

where $y_{2}=h+y_{1}, \rho \approx \rho_{L}(1-\alpha)$ and $\alpha=1-\rho / \rho_{L}$. By elimination

$$
\begin{equation*}
\alpha=h / H \tag{5}
\end{equation*}
$$

