Solution to Problem 102B:

Defining axes y vertically and x to the right, the acceleration a acts in a manner precisely analogous to the acceleration due to gravity, g, so that

$$
\begin{equation*}
\frac{\partial p}{\partial x}=-\rho a ; \quad \frac{\partial p}{\partial y}=-\rho g \tag{1}
\end{equation*}
$$

where ρ is the density of the fluid. Another way to obtain the same results is to consider the use of Euler's equations with the velocities set to zero so that

$$
\begin{equation*}
\rho \frac{\partial u}{\partial t}=\rho a=-\frac{\partial p}{\partial x} \quad ; \quad 0 \quad=-\frac{\partial p}{\partial y}-\rho g \tag{2}
\end{equation*}
$$

If the fluid is static relative to the U-tube then $\partial u / \partial t=a, \partial v / \partial t=0$ and we recover the first equation.
Then if atmospheric pressure is denoted by p_{a} :

$$
\begin{gather*}
p_{B}=p_{a}+\rho g h+\rho g b \tag{3}\\
p_{C}=p_{B}-\rho a L=p_{a}+\rho g h+\rho g b-\rho a L \tag{4}\\
p_{D}=p_{C}-\rho g b=p_{a}+\rho g h-\rho a L=p_{a} \tag{5}
\end{gather*}
$$

Therefore

$$
\begin{equation*}
a=g h / L \tag{6}
\end{equation*}
$$

