An Internet Book on Fluid Dynamics

Solution to Problem 101A

Find the pressure at the center of a once-molten Earth of radius, $R=6.44 \times 10^{6} \mathrm{~m}$, and density, $\rho=5600 \mathrm{~kg} / \mathrm{m}^{3}$. Since the acceleration due to gravity is linear with radius and $g(R)=9.81 \mathrm{~m} / \mathrm{s}$, then

$$
g(r)=\frac{g(R)}{R} r
$$

For a fluid at rest:

$$
\frac{d p}{d r}=-\rho g
$$

Integrating:

$$
\begin{aligned}
p(r)=\int \frac{d p}{d r} d r & =\int-\rho \frac{g(R)}{R} r d r \\
& =-\frac{1}{2} \rho \frac{g(R)}{R} r^{2}+C
\end{aligned}
$$

Evaluating the constant:

$$
\begin{gathered}
p(R)=p_{A}=-\rho \frac{g(R)}{2} R \\
\Rightarrow C=p_{A}+\rho \frac{g(R)}{2} R
\end{gathered}
$$

So the pressure is given by:

$$
p(r)=p_{A}+\frac{\rho R g(R)}{2}\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

Then at the center of the molten Earth (neglecting p_{A}):

$$
\begin{aligned}
p(0) & =\frac{\rho R g(r)}{2} \\
& =\frac{\left(5600 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(6.44 \times 10^{6} \mathrm{~m}\right)\left(9.81 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right)}{2} \\
& =1.77 \times 10^{11} \mathrm{~Pa}
\end{aligned}
$$

