An Internet Book on Fluid Dynamics

Problem 520A

A pressure transducer is connected to a large water tank for the purpose of measuring the unsteady pressures in that tank. The connection is made by means of a 10 cm long section of rigid tube whose internal diameter is 3 mm :

The tube and the internal cavity of the transducer are completely filled with water. The deformation of the diaphragm in the transducer is such that the internal cavity volume, V, increases with the cavity pressure, p, according to $V=a+b p$ where a and b are constants. The value of b in this particular transducer is $10^{-11} \mathrm{~m}^{3} / P a$.

By determining the relation between the pressure in the tank and the transducer cavity pressure, find the natural frequency (in $H z$) of the transducer and its connection. (Note: this will, in practice, be the frequency at and above which the transducer will fail to respond accurately to the tank pressures.) Assume the density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Neglect the wall shear stress inside the tube.

