An Internet Book on Fluid Dynamics

Problem 350A

A stream of air $\left(\gamma=1.4, R=280 \mathrm{~m}^{2} / \mathrm{s}^{2} K^{\circ}\right)$ with a velocity of $1200 \mathrm{~m} / \mathrm{s}$ and a temperature of $230^{\circ} \mathrm{K}$ approaches a turn away from the flow of angle 35 degrees :

Find the Mach number, M_{2}, the temperature, T_{2}, and the velocity of the flow downstream of the corner. If the temperature of the upstream flow is lowered while its velocity remains at $1200 \mathrm{~m} / \mathrm{s}$, what is the theoretical minimum upstream temperature at which the flow will still be able to negotiate the turn?

