Problem 334A

A pitot tube which senses the stagnation pressure, p_S , at its mouth is often used to measure the speed of an airplane. Such a device is incorporated into the nose of a supersonic airplane for the purpose of measuring the Mach number, M, at which the airplane is travelling (M > 1):

Assume that the ambient pressure of the air, p_A , through which the airplane is travelling is known. If a bow shock (like a normal shock wave) forms upstream of the pitot tube, find the relation between the measured quantity, p_S/p_A , and the required quantity, M. The relation also involves the ratio of specific heats, γ .

[Note: The answer cannot be written explicitly as $M = \text{function}(p_S/p_A)$ but can be written as $p_S/p_A = \text{function}(M)$.]