An Internet Book on Fluid Dynamics

Problem 310A

Consider a straight pipe filled with incompressible liquid. The walls of the pipe are elastic so that the cross-sectional area, A, changes with the internal pressure, p, according to the relation:

$$
A=A_{0}+A_{1} p
$$

Thus the pipe may have different cross-sectional areas at different axial positions depending on the internal pressure at each position. Find the speed of propagation, c, of a small pressure wave travelling along the pipe assuming A_{0} and A_{1} are known constants and that $A_{1} p$ is always small compared with A_{0} so that simple binomial expansions may be used (see note). Give your answer in terms of A_{0}, A_{1} and the density, ρ, of the liquid. Note that if $b \ll a$ then:

$$
(a+b)^{n} \approx a^{n}+n a^{n-1} b
$$

