An Internet Book on Fluid Dynamics

Problem 303A

An air blower takes air ($R=280 \mathrm{~m}^{2} / \mathrm{s}^{2} K^{\circ}, \gamma=1.4$) from the atmosphere (pressure, $p_{A}=100,000 \mathrm{~kg} / \mathrm{m} \mathrm{s}^{2}$, temperature, $T_{A}=293^{\circ} \mathrm{K}$) and ingests it through a smooth entry duct so that the losses are negligible. The cross-sectional area of the entry duct just upstream of the blower and that of the exit duct are both $0.01 \mathrm{~m}^{2}$.

The pressure ratio, p_{2} / p_{1}, across the blower itself is 1.05 and the exit pressure is equal to the atmospheric pressure, p_{A}. The air is assumed to behave isentropically upstream of the blower. Find

1. The velocity of the air entering the blower $\left(u_{1}\right)$.
2. The mass flow rate of air through the system.
