Problem 303A

An air blower takes air ($R = 280m^2/s^2 K^\circ$, $\gamma = 1.4$) from the atmosphere (pressure, $p_A = 100,000 kg/m s^2$, temperature, $T_A = 293^\circ K$) and ingests it through a smooth entry duct so that the losses are negligible. The cross-sectional area of the entry duct just upstream of the blower and that of the exit duct are both $0.01m^2$.

The pressure ratio, p_2/p_1 , across the blower itself is 1.05 and the exit pressure is equal to the atmospheric pressure, p_A . The air is assumed to behave isentropically upstream of the blower. Find

- 1. The velocity of the air entering the blower (u_1) .
- 2. The mass flow rate of air through the system.