An Internet Book on Fluid Dynamics

Problem 280E

The sketch below defines the geometry of an axisymmetric underwater body that is quite streamlined in the sense that L / R is large. This body travels through the incompressible water at a velocity, U, parallel to the axis.

It is to be assumed:

- that the velocity distribution over the spherical nose, $B A B$, is the same as in potential flow, that is to say the velocity outside the boundary layer is $\frac{3}{2} U \sin \theta$.
- that the flow separates at the sharp trailing edge, C, so that the pressure coefficient acting on the circular base, $C C$, is

$$
C_{p}=-0.5
$$

Remember that the pressure coefficient is defined as, $C_{p}=\left(p-p_{\infty}\right) / \frac{1}{2} \rho U^{2}$ where p is the pressure, p_{∞} is the pressure far upstream and ρ is the fluid density.

- that the skin friction forces on the spherical nose are negligible.

If the drag coefficient is defined as the drag divided by $\frac{1}{2} \rho U^{2}$ and the frontal projected area $\left(\pi R^{2}\right)$ find:

1. The contribution of the form drag to the total drag coefficient (denote this by $C_{D F}$).
2. An estimate of the contribution of the skin friction on the cylindrical surface of the body (between B and C) to the total drag coefficient, assuming the boundary layer remains laminar. This should be in terms of the Reynolds number, $R e=2 U R / \nu$, where ν is the kinematic viscosity of the fluid.
3. For what aspect ratio, L / R, will the drag be comprised of equal parts of form and skin friction drag if $R e=10000$?
