Problem 276B

The rough surface of an automobile tire consists of roughnesses of size, ϵ . Consider the following Couette flow which models the hydroplaning of the tire on a smooth road:

The speed of the tire is U, the mean liquid film thickness is h, and the kinematic viscosity of the liquid is ν . If the magnitudes of the unsteady turbulent velocities, u' and v', generated by the roughness are both given approximately by $U\epsilon y/h^2$ where y is the distance above the smooth road find the ratio of the "effective" dynamic viscosity of the film of liquid to the actual liquid dynamic viscosity. The answer includes U, ϵ , h and ν .