Problem 276A

Consider a turbulent boundary layer on a flat plate (constant and uniform velocity and pressure in the flow outside the boundary layer). The plate is very rough, the size of the roughnesses, ϵ , being very much greater than the laminar sub-layer thickness which would occur in the absence of the roughness. It is anticipated that the velocity distribution within the turbulent part of the boundary layer can be approximated by

$$u^* = C(y/\epsilon)^{\frac{1}{7}}$$

where C is some constant, y is the distance from the wall, \bar{u} is the mean velocity and $u^* = \bar{u}/u_{\tau}$ where the friction velocity, $u_{\tau} = (\tau_w/\rho)^{\frac{1}{2}}$, τ_w being the wall shear stress and ρ the fluid density. Using approximate boundary layer methods find an expression for the boundary layer thickness, δ , as a function of x, the distance along the plate from the leading edge. Assume initial conditions $\delta = 0$ at x = 0; the result includes ϵ , C and the profile parameter $\alpha = 0.0972$.